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Abstract—This paper proposes a low-latency ordered statistics
decoding (OSD) algorithm for BCH codes. The OSD latency
is mainly caused by Gaussian elimination (GE) that produces
a systematic generator matrix of the code. Considering BCH
codes is binary subcodes of Reed-Solomon (RS) codes, we show
that the BCH codeword candidates can be produced through the
systematic generator matrix of the corresponding RS code. The
systematic generator matrix of an RS code can be formed by
generating the linearly independent RS codewords in parallel,
replacing the GE process and enabling a low OSD latency.
This paper further proposes a segmented variant that facilitates
the decoding by reducing the number of test error patterns
(TEPs). Complexity of the proposed OSD is also analyzed. Our
simulation results show that the proposed decoding can achieve
a similar performance as the conventional OSD, but with a lower
decoding complexity. The decoding latency can be reduced over
the conventional OSD substantially.

Index Terms—BCH codes, low-latency, subfield subcode, max-
imum likelihood decoding, ordered statistics decoding

I. INTRODUCTION

The realization of ultra-reliable low-latency communication
(URLLC) requires the support of competent short-to-medium
length channel codes. The transmission limit of a finite
length coded system has been characterized in [1]. Recent
research on short-to-medium length codes has shown that
ordered statistics decoding (OSD) of BCH codes can yield
a performance that is closed to the transmission limit [2]–[3].
In OSD, the codeword candidates are generated through the
re-encoding of test messages that are formed by alternating
decisions of the most reliable independent positions (MRIPs)
in a codeword. The re-encoding process requires Gaussian
elimination (GE) that produces a systematic generator matrix
of the code. However, due to the sequential feature of GE,
its latency cannot be compromised, which is also a long-
standing challenge for OSD [4]. In order to reduce the
OSD complexity, several skipping and stopping rules have
been proposed in [5]–[8]. They facilitate the decoding by
identifying the unpromising test error patterns (TEPs) and
the maximum likelihood (ML) codeword candidate within
the decoding output list, respectively. They result in skipping
the unpromising TEPs, or terminating the decoding earlier.
The box-and-match algorithm [9] trades time and space com-
plexity by considering the TEPs of small weights. Moreover,
the MRIPs segmentation approach was proposed in [10],
dividing the OSD operation into several segments to reduce
the decoding complexity. On the other aspect, the multiple

information sets generated by randomly biased log-likelihood
ratios (LLRs) were proposed in [11]–[12] in order to improve
the OSD performance.

However, the GE latency challenge remains, which will be
addressed by this work. Since BCH codes are binary subcodes
of Reed-Solomon (RS) codes, their codeword candidates can
be generated through the corresponding RS codewords, which
requires the RS systematic generator matrix. It can be formed
by generating the linearly independent RS codewords in
parallel, underpinning a low decoding latency. In particular,
an (n, k) BCH code is a binary subcode of an (n, k′) RS
code that is defined over a binary extension field, where n is
their codeword length and the dimension of the RS code is
greater than that of the BCH code, i.e., k′ > k. The k′ linearly
independent RS codewords can be generated in parallel using
the Lagrange interpolation polynomials, forming the RS sys-
tematic generator matrix. The BCH codeword candidates can
be yielded through generating the binary RS codewords by the
matrix. In order to further reduce the decoding complexity,
a segmented low-latency OSD is further proposed. By seg-
menting the original TEPs, a near ML decoding performance
can still be achieved with less TEPs, resulting in a lower
decoding complexity. Complexity of the proposed OSD is
analyzed. Our simulation results show that the decoding
latency (in microsecond) can be substantially reduced over the
conventional OSD. They yield a similar decoding performance
as the conventional OSD with a smaller decoding output list,
resulting in fewer floating point operations for identifying the
most likely codeword from the list.

II. PRELIMINARIES

A. Ordered Statistics Decoding

Let Fq denote a finite field of size q, and its extension
field is further denoted as Fqm , where m > 1. Let f =
(f0, f1, . . . , fk−1) ∈ Fk2 and c = (c0, c1, . . . , cn−1) ∈ Fn2
denote the message vector and codeword vector of an (n, k)
BCH code, respectively, and d denote its minimum Ham-
ming distance. Its generator matrix G is a k × n binary
matrix as G = [g0, g1, · · · , gn−1], where g0, g1, · · · , gn−1

are the column vectors of length k. Let us assume that
a BCH codeword c is transmitted by the use of BPSK
modulation as : 0 7→ 1; 1 7→ −1. The modulated symbol
sequence is x = (x0, x1, . . . , xn−1), where xj ∈ {−1, 1}
and j = 0, 1, . . . , n − 1. After a memoryless channel, the
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received symbol sequence is r = (r0, r1, . . . , rn−1) ∈ Rn.
Let Pr (rj | cj = 0) and Pr (rj | cj = 1) denote channel ob-
servations of cj , its received LLR is defined as

Lj = ln
Pr(rj | cj = 0)

Pr(rj | cj = 1)
. (1)

Subsequently, the hard-decision received word y = (y0, y1,
. . . , yn−1) ∈ Fn2 can be obtained. That says if Lj > 0, yj = 0;
otherwise, yj = 1. Since a greater |Lj | indicates the received
information of cj is more reliable, reliability of the received
information for all coded bits can be ordered based on |Lj |,
yielding a refreshed bit index sequence j0, j1, . . . , jn−1. It
indicates |Lj0 | ≥ |Lj1 | ≥ · · · ≥ |Ljn−1

|. A permuted received
word can be further obtained as

y′ = Π
(
y
)

=
(
yj0 , yj1 , . . . , yjn−1

)
, (2)

where Π denotes the permutation function. Applying the same
permutation to the columns of G yields

G′ = Π (G) =
[
gj0 , gj1 , . . . , gjn−1

]
. (3)

GE will be performed on G′, reducing columns
gj0 , gj1 , . . . , gjk−1

into weight one and yielding a systematic
generator matrix as

G′′ =
[
g′
j0 , g

′
j1 , . . . , g

′
jn−1

]
, (4)

where columns g′
j0
, g′
j1
, . . . , g′

jk−1
form a k × k identity

submatrix. However, this cannot be achieved if the first k
columns are not linearly independent. In this case, a second
permutation will be needed, and the GE will be conducted
again. This adjustment continues until the first k columns of
G′ are linearly independent. Note that if a second permutation
is needed, y′ will also be updated accordingly. Without further
mentioning, we assume that the first k columns of G′ have
been ensured with this property.

Consequently, after ensuring the first k columns of G′

being linearly independent, the first k positions in y′ are
called the MRIPs and their index set is denoted as Υ =
{j0, j1, . . . , jk−1}. Let f = (yj0 , yj1 , . . . , yjk−1

) denote a
message and e(ω) = (e

(ω)
j0
, e

(ω)
j1
, . . . , e

(ω)
jk−1

) ∈ Fk2 de-
note a TEP that will be used to update f , where ω =

1, 2, . . . ,
∑τ
λ=0

(
k
λ

)
. For each e(ω), there are at most τ non-

zero entries. The test messages can be generated by

f (ω) = f + e(ω). (5)

The corresponding codeword candidate can be generated by

ĉ(ω) = (ĉ
(ω)
0 , ĉ

(ω)
1 , . . . , ĉ

(ω)
n−1) = Π−1(f (ω) ·G′′), (6)

where ĉ(ω) ∈ Fn2 and Π−1 is the inverse of the permutation
function Π. Let us further define the correlation distance
between y and ĉ(ω) as

d(y, ĉ(ω)) ,
∑

j:yj 6=ĉ(ω)
j

|Lj | . (7)

A codeword candidate with a smaller correlation distance to
y is more likely to be the transmitted codeword. Let Sω =

{Lj |yj = ĉ
(ω)
j }, elements Lj of Sω can be reordered as

|Lξ0 | ≤ |Lξ1 | ≤ · · · ≤
∣∣Lξ(n−dω−1)

∣∣ , (8)

where dω denotes the Hamming distance between y and ĉ(ω).
The ML criterion is [5]

d(y, ĉ(ω)) ≤
d−dω−1∑
j=0

∣∣Lξj ∣∣ . (9)

If ĉ(ω) satisfies (9), it will be the ML codeword. The OSD
decoding can be terminated once the ML codeword is found.
Otherwise, the one that yields the smallest correlation distance
to y will be selected as the decoding output ĉopt.

Note that the GE that produces the systematic generator
matrix G′′ is a sequential process incurring the OSD latency
challenge.

B. BCH Codes and RS Codes

The subfield subcode relationship between BCH codes and
RS codes is stated as follows.

Definition I ([13]): Given two linear block codes C and C′
of length n, they are defined over Fq and Fqm , respectively.
If C = C′ ∩ Fnq , C is a subcode of C′ over Fq .

Lemma 1([14]): An (n, k) t error-correcting BCH code
defined over F2 is a subcode of an (n, k′) t error-correcting
RS code defined over F2m . Note that, the RS codes are the
maximum distance separable (MDS) codes. With the same
error correction capacity, the RS code dimension is greater
than that of the BCH subcode, i.e., k′ > k.

III. LOW-LATENCY ORDERED STATISTICS DECODING

A. RS Systematic Generator Matrix

With the permuted received word y′ of (2), let us de-
fine Θ = {j0, j1, . . . , jk′−1} as the index set of its k′

most reliable positions (MRPs), and its complementary set
Θc = {jk′ , jk′+1, . . . , jn−1}. Note that since the OSD is
discussed under the binary BCH code paradigm, it is assumed
y′ ∈ Fn2 . Otherwise, for an RS code, y′ ∈ Fn2m . Picking
up the received symbols indexed by Θ, an initial message
u = (yj0 , yj1 , . . . , yjk′−1

) ∈ Fk′2 can be formed. We also
denote the support of its symbol indices that are realized in
y′ as supp(u) = {j0, j1, . . . , jk′−1}. With u, the message
polynomial of the (n, k′) RS code can be defined as

Hu(x) =
∑

j∈supp(u)

yjLj(x), (10)

where
Lj(x) =

∏
j′∈supp(u),j′ 6=j

x− αj′
αj − αj′

(11)

is the Lagrange interpolation polynomial of code locator αj .
It enables Lj(αj) = 1, and Lj(αj′) = 0 if j′ 6= j. With
code locators α0, α1, . . . , αn−1, the RS codeword v = (v0,
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v1, . . . , vn−1) ∈ Fn2m can be generated by

v = (Hu(α0), Hu(α1), . . . ,Hu(αn−1)). (12)

Let us define k′ weight-1 messages as uj0 = (1, 0, . . . , 0),
uj1 = (0, 1, . . . , 0), . . . , ujk′−1

= (0, 0, . . . , 1), respec-
tively. They have the same support as u, i.e., supp(uj0) =
supp(uj1) = · · · = supp(ujk′−1

) = Θ. Consequently, the
generator matrix of the (n, k′) RS code can be generated by

GRS

=


Huj0

(α0) Huj0
(α1) · · · Huj0

(αn−1)

Huj1
(α0) Huj1

(α1) · · · Huj1
(αn−1)

...
...

. . .
...

Huj
k′−1

(α0) Huj
k′−1

(α1) · · · Huj
k′−1

(αn−1)

 ,
(13)

where each row is a codeword of the respective message.
Since the k′ messages are linearly independent, the k′ code-
words are also linearly independent. They constitute the
generator matrix of the (n, k′) RS code. In GRS, columns
j0, j1, . . . , jk′−1 form a k′ × k′ identity submatrix. Hence,
GRS is in the systematic form. The row-i column-j entry of
GRS is

Hui
(αj) =


0, if j ∈ Θ, j 6= i;

1, if j ∈ Θ, j = i;∏
j′∈Θ(αj−αj′)

(αj−αi)
∏

j′∈Θ,j′ 6=i(αi−αj′)
, if j ∈ Θc.

(14)
Since αj

∏n−1
j′=0,j′ 6=j (αj − αj′) = 1, when j ∈ Θc,

Hui
(αj) =

αi
∏
j′∈Θc (αi − αj′)

αj (αj − αi)
∏
j′∈Θc,j′ 6=j (αj − αj′)

. (15)

Note that when the code rate is greater than 1/2, |Θc| < |Θ|,
and eq. (15) requires less finite field computation.

Note that matrix GRS can be generated in parallel, under-
pinning the low-latency feature of the proposed OSD.

B. Generation of BCH Codeword Candidates

The BCH codeword candidates can be further generated
by GRS. With the initial message u = (yj0 , yj1 , . . . , yjk′−1

),
RS codeword v̂(0) = (v̂

(0)
0 , v̂

(0)
1 , . . . , v̂

(0)
n−1) ∈ Fn2m can be

generated by
v̂(0) = u ·GRS, (16)

where v̂
(0)
j = yj , ∀j ∈ Θ. Similar to the OSD that was

introduced in Section II. A, let us also define a TEP as
e′

(ω)
= (e′

(ω)
j0
, e′

(ω)
j1
, . . . , e′

(ω)
jk′−1

) ∈ Fk′2 . Subsequently, the
test message u(ω) can be generated by

u(ω) = u + e′
(ω)
. (17)

The corresponding RS codeword v̂(ω) = (v̂
(ω)
0 , v̂

(ω)
1 , . . . ,

v̂
(ω)
n−1) can be further generated by

v̂(ω) = (u + e′
(ω)

) ·GRS

= v̂(0) + e′
(ω) ·GRS,

(18)

where v̂(ω) ∈ Fn2m . Based on Lemma 1, if v̂(ω) ∈ Fn2 , it is
also an (n, k) BCH codeword. The following Theorem shows
that this binary assessment can be implemented effectively by
knowing v̂(0), e′(ω) and GRS.

Theorem 2: If v̂(0)
j +

∑
i∈Θ,e′

(ω)
i 6=0

Hui
(αj) is binary, for

all j ∈ Θc, v̂(ω) is a BCH codeword.
Proof: Based on (18), let us define

e′
(ω) ·GRS = (φ

(ω)
0 , φ

(ω)
1 , . . . , φ

(ω)
n−1). (19)

The RS codeword symbol v̂(ω)
j can be determined by

v̂
(ω)
j = v̂

(0)
j + φ

(ω)
j . (20)

Based on (14), we know if j ∈ Θ,

φ
(ω)
j = e′

(ω)
j . (21)

Since for j ∈ Θ, v̂(0)
j ∈ {0, 1} and the TEP e′

(ω) is also
binary. Hence, v̂(ω)

j ∈ {0, 1}, ∀j ∈ Θ. For the remaining
symbols with index j ∈ Θc, based on (14) and (18), we know

v̂
(ω)
j = v̂

(0)
j +

∑
i∈Θ,e′

(ω)
i 6=0

Hui
(αj). (22)

Therefore, if they are binary, codeword v̂(ω) is binary. Based
on Lemma 1, it is also a BCH codeword.

Similar to the conventional OSD, the proposed OSD gen-
erates the codeword candidates by numerating the TEPs e′(ω)

and re-encoding as in (18). Based on Theorem 2, if codeword
symbols v̂

(ω)
j (j ∈ Θc) are binary, v̂(ω) will be a BCH

codeword. The correlation distance between y and v̂(ω) will
be further determined as in (7). Once a codeword candidate
v̂(ω) satisfies the ML criterion of (9), v̂(ω) will be selected as
the decoding output v̂opt and decoding terminates. Otherwise,
the one that yields the smallest correlation distance with y
will be selected as v̂opt.

Since the systematic generator matrix GRS can be generated
in parallel, it yields a decoding latency advantage over the
conventional OSD. Summarizing the above description, the
low-latency OSD is shown below as in Algorithm 1.

IV. SEGMENTED VARIANT

This section further proposes a segmented variant of the
proposed OSD, in order to reduce its complexity.

The above description shows that in the OSD, if the number
of errors in the MRIPs is not greater than the decoding order
τ , the transmitted codeword will be included in the decoding
output list. Let Pe,OSD(τ), Pe,ML and Pe(τ) denote the error
probability of OSD with an order τ , the error probability of
the ML decoding, and the probability that the number of errors
in the MRIPs is greater than τ , respectively. They hold

Pe,OSD(τ) ≤ Pe,ML + Pe(τ). (23)
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Algorithm 1 Low-Latency OSD of BCH Codes
Input: Received symbol sequence r, order τ ;
Output: v̂opt;

1: Compute the LLRs as in (1), and determine y;
2: Define MRPs, u, and let dmin = +∞;
3: Generate GRS as in (14);
4: Generate the initial codeword v̂(0) as in (16);
5: For each TEP e′

(ω), do
6: Test if the codeword v̂(ω) is binary as in (22);
7: If v̂(ω) is binary
8: Determine d(y, v̂(ω)) as in (7);
9: If d(y, v̂(ω)) < dmin

10: Update dmin = d(y, v̂(ω)) and v̂opt = v̂(ω);
11: If d(y, v̂(ω)) satisfies the ML criterion of (9)
12: Terminate the decoding;
13: End for
14: Return v̂opt;

When
τ ≥ min

{⌈
d

4
− 1

⌉
, k

}
, (24)

Pe(τ)� Pe,ML [3]. Therefore, if the OSD order is sufficiently
large, it can approach the ML decoding performance.

Since the length of TEP e′
(ω) is greater than that of e(ω)

in the conventional OSD, there are more test errors in e′
(ω).

They occur in the extra symbol band defined by Θ \Υ. The
analysis of [3] shows that if τ satisfies (24), Pe(τ) becomes
negligible. Hence, there is no need to assign an order greater
than τ for the first k positions of MRPs.

With e′
(ω), we can partition it into two segments as

e′
(ω)
1 = (e′

(ω)
j0
, e′

(ω)
j1
, . . . , e′

(ω)
jk−1

) and e′
(ω)
2 = (e′

(ω)
jk
, e′

(ω)
jk+1

,

. . . , e′
(ω)
jk′−1

), respectively. The proposed OSD can be per-

formed by numerating e′
(ω)
1 and e′

(ω)
2 , which form a smaller

set of TEPs. Let τ1 and τ2 denote the segment orders of e′(ω)
1

and e′
(ω)
2 , respectively. Similar to the definition of Pe(τ), let

Pe1
(τ1) and Pe2

(τ2) denote the probabilities of the number of
errors in e′

(ω)
1 is greater than τ1 and the number of errors in

e′
(ω)
2 is greater than τ2, respectively. In a memoryless channel,

we have

Pe(τ) = 1− (1− Pe1
(τ1))(1− Pe2

(τ2)). (25)

Based on (23), we can obtain the error probability upper
bound of the segmented OSD as

Pe,seg-OSD(τ1, τ2) ≤ Pe,ML+Pe1
(τ1)+Pe2

(τ2)−Pe1
(τ1)Pe2

(τ2).
(26)

Hence, if τ1 ≥ min {dd/4− 1e , k}, Pe1
(τ1)� Pe,ML, and

Pe,seg-OSD(τ1, τ2) ≤ Pe,ML + Pe2
(τ2). (27)

Therefore, if τ1 ≥ min {dd/4− 1e , k} and τ2 is appropri-
ately chosen such that Pe2

(τ2) � Pe,ML, the ML decoding
performance can still be approached by the segmented OSD.
This segmented variant helps reduce the number of TEPs

significantly, resulting in a reduced decoding complexity.
Note that the partition point in the MRIPs can be more

flexibly adjusted to achieve a better complexity reduction. But
this process remains heuristic. More numerical results on this
will be provided in Section VI.

V. COMPLEXITY ANALYSIS

This section analyzes the complexity of the proposed OSD
and compares it with the conventional OSD. In the conven-
tional OSD, binary operations and floating point operations
are needed. The GE process requires n · (min{n− k, k})2

binary operations. Based on G′′, k · (n − k) and (n −
k) ·

∑τ
λ=1 λ

(
k
λ

)
binary operations are needed to compute

ĉ(0) and the other candidate codewords ĉ(ω), respectively.
Finally, identifying the decoding output ĉopt requires at most
n ·
∑τ
λ=0

(
k
λ

)
floating point operations. In the proposed OSD,

the F2m finite field operations and floating point operations are
needed. In computing the RS systematic generator matrix GRS
as in (14) or (15), 2n ·min{n− k′, k′} finite field operations
are needed. The generation of v̂(0) as in (16) requires at
most k′ · (n − k′) finite field operations. Let Nj′ denote the
number of TEPs e′

(ω) that yield binary estimated symbols
v̂

(ω)
j in Θc after the j′th judgement as in Theorem 2, where
j′ = 0, 1, . . . , n − k′. Note that when j′ = 0, no assessment
has been conducted, and N0 is the total number of TEPs,
i.e., N0 =

∑τ
λ=0

(
k′

λ

)
. A BCH codeword will be confirmed

after the n − k′ positions in Θc have been assessed. Hence,
the decoding output list cardinality of the proposed OSD
is Nn−k′ . Computing BCH codeword candidates v̂(ω) as in
(22) requires at most

∑τ
λ=1 λ

(
k′

λ

)
+ τ

∑n−k′
j′=1 Nj′ finite field

operations. Finally, identifying v̂opt requires at most nNn−k′
floating point operations. The above complexity characteri-
zations are summarized as in Table I . It can be seen that
complexity of the proposed OSD also depends on Nj′ . More
numerical results will be provided in the following section,
providing more insight of it.

TABLE I
COMPLEXITY OF THE PROPOSED AND THE CONVENTIONAL OSDS.

Algorithms Operations Complexity

OSD (τ )

GE n · (min{n− k, k})2

Compute ĉ(0) k · (n− k)
Compute ĉ(ω) (n− k) ·

∑τ
λ=1 λ

(k
λ

)
Find ĉopt n ·

∑τ
λ=0

(k
λ

)
Compute GRS 2n ·min{n− k′, k′}

Low-Lat. Compute v̂(0) k′ · (n− k′)
OSD (τ) Compute v̂(ω) ∑τ

λ=1 λ
(k′
λ

)
+ τ

∑n−k′
j′=1

Nj′

Find v̂opt nNn−k′

VI. SIMULATION RESULTS

A. Decoding Performance

Figs. 1 and 2 show the decoding frame error rate (FER)
of the (31, 21) and the (63, 45) BCH codes, respectively.
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For the segmented low-latency OSD, it is parameterized by
(τ1 | l, τ2), where l denotes the length of the first segment.
That says e′(ω)

1 = (e′
(ω)
j0
, e′

(ω)
j1
, . . . , e′

(ω)
jl−1

) and e′
(ω)
2 = (e′

(ω)
jl
,

e′
(ω)
jl+1

, . . . , e′
(ω)
jk′−1

). Performance of the Berlekamp-Massey
(BM) decoding [15] and the conventional OSD [3] are pre-
sented as benchmarks. The ML decoding performances were
obtained in [16]. Our results show that the low-latency OSD
performance can approach that of the conventional OSD, but
requires a larger decoding order. This is due to the fact that
k′ > k and |Θ| > |Υ|, more errors will be introduced in
the MRPs of the low-latency OSD. However, our results also
show that the segmented variant can yield a similar decoding
performance with a smaller order.

2 3 4 5 6 7 8

FE
R

SNR (dB)

BM

ML

1.E+0

1.E-1

1.E-2

1.E-3

1.E-4

1.E-5

OSD (1)

Low-Lat. OSD (1)

Low-Lat. OSD (2)

Seg. Low-Lat. OSD ( 1 | 21, 1)

Fig. 1. Performance of the (31, 21) BCH code.

2 3 4 5 6 7 8
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R

SNR (dB)

1.E+0

1.E-1

1.E-2

1.E-3

1.E-4

1.E-5

BM

OSD (1)

ML

Low-Lat. OSD (1)

Low-Lat. OSD (2)

Low-Lat. OSD (3)

Seg. Low-Lat. OSD (1 | 45, 3)
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Fig. 2. Performance of the (63, 45) BCH code.

B. Decoding Complexity and Latency

As pointed out in Section V, complexity of the proposed
OSD depends on Nj′ . Table II shows our numerical results of
Nj′ in decoding the (63, 45) BCH code with τ = 3. Note that
the BCH code is a binary subcode of the (63, 57) RS code. It
can be seen that the assessment of Theorem 2 can effectively
eliminate the nonbinary codewords. E.g., after assessing the
first symbol in Θc, i.e., v̂(ω)

jk′
, there are only 957 TEPs that can

possibly produce BCH codewords. Moreover, the decoding
output list cardinality N6 is only 7, which is far smaller than
that of the conventional OSD with τ = 1. This will result in

the complexity advantage of the proposed OSDs, as discussed
below.

TABLE II
NUMERICAL RESULTS OF Nj′ IN DECODING THE (63, 45) BCH CODE

WITH τ = 3.

j′ 0 1 2 3 4 5 6
Nj′ 30914 957 36 9 8 7 7

TABLE III
NUMERICAL RESULTS OF COMPLEXITY AND LATENCY IN DECODING THE

(63, 45) BCH CODE.

Algorithms
SNR Complexity Latency
(dB) F2/F64 oper. Floating oper. (µs)

OSD (1)

4 2.78× 104 81 6.58× 102

5 2.60× 104 19 5.34× 102

6 2.56× 104 8 5.06× 102

Low-Lat.
OSD (3)

4 1.81× 104 15 1.99× 103

5 5.21× 103 8 4.36× 102

6 2.58× 103 7 1.32× 102

Seg. Low-Lat.
OSD (1 | 45, 3)

4 3.69× 103 8 2.71× 102

5 2.64× 103 7 1.44× 102

6 2.45× 103 7 1.17× 102

Table III compares the complexity and latency in decoding
the (63, 45) BCH code. All OSDs will terminate once an
ML codeword is identified by (9). The decoding complexity
and latency are measured and averaged as in decoding one
codeword. Referring to Fig. 2, to achieve the same decoding
performance, the number of finite field operations in the two
proposed OSDs are smaller than that of the binary operations
in the conventional OSD, especially segmented variant. De-
spite the proposed OSDs incur more TEPs, Table II shows that
the binary codeword assessment of Theorem 2 helps eliminate
the redundant ones effectively, resulting in a relatively low
level of finite field operations. This assessment also results in
fewer floating point operations required by the ML criterion.
Finally, Table III also vindicates the latency advantage of the
proposed OSDs. Our simulations were performed with the
Intel core i7-10710U CPU. In the proposed OSDs, each row
of GRS is generated in parallel. In all OSDs, the TEPs are
decoded in a serial manner. It can be seen that both the low-
latency OSD and its segmented variant can effectively reduce
the decoding latency over the conventional OSD, vindicating
the latency advantage of our proposed OSDs.
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